A New Algorithm for Ill-Posed Problem of GNSS-Based Ionospheric Tomography

نویسندگان

چکیده

Ill-posedness of GNSS-based ionospheric tomography affects the stability and accuracy inversion results. Truncated singular value decomposition (TSVD) is a common algorithm reconstruction. However, TSVD method usually has low reconstruction efficiency. To resolve above problem, truncated mapping (TMSVD) presented to improve reconstructed computational authenticate effectiveness advantages TMSVD algorithm, numerical test scheme devised. Finally, temporal–spatial variations selected region are studied using GNSS observations under different geomagnetic conditions. The results can accurately reflect semiannual anomalies, diurnal variations, storm effects. In contrast with ionosonde data, it found that profiles more consistent than those IRI 2016. study suggests an efficient for tomographic electron density (IED).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ionospheric Sounding and Tomography by GNSS

Studies of the ionosphere and the physics of the ionospheric processes rely on the knowledge of spatial distribution of the ionospheric plasma. Being the propagation medium for radio waves, the ionosphere significantly affects the performance of various navigation, location, and communication systems. Therefore, investigation into the structure of the ionosphere is of interest for many practica...

متن کامل

A comparison of regularizations for an ill-posed problem

We consider numerical methods for a “quasi-boundary value” regularization of the backward parabolic problem given by { ut + Au = 0 , 0 < t < T u(T ) = f, where A is positive self-adjoint and unbounded. The regularization, due to Clark and Oppenheimer, perturbs the final value u(T ) by adding αu(0), where α is a small parameter. We show how this leads very naturally to a reformulation of the pro...

متن کامل

Developing a New Algorithm for a Utility-based Network Design Problem with Elastic Demand

Developing the infrastructures for preventing non-communicable diseases is one of the most important goals of healthcare context in recent years. In this regard, the number and capacity of preventive healthcare facilities as well as assignment of customers to facilities should be determined for each region. Besides the accessibility, the utility of customers is a determinative factor in partici...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Irregular Solutions of an Ill-Posed Problem

Tikhonov regularization is a popular and effective method for the approximate solution of illposed problems, including Fredholm equations of the first kind. The Tikhonov method works well when the solution of the equation is well-behaved, but fails for solutions with irregularities, such as jump discontinuities. In this paper we develop a method that overcomes the limitations of the standard Ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2023

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs15071930